Colin De Verdiere s Meromorphic Continuation of Eisenstein Series

Series representing modular forms

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

Eisenstein series for the modular group [edit]

The real part of G 6 as a function of q on the unit disk. Negative numbers are black.

The imaginary part of G 6 as a function of q on the unit disk.

Let τ be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series G 2k (τ) of weight 2k , where k ≥ 2 is an integer, by the following series:

G 2 k ( τ ) = ( m , n ) Z 2 { ( 0 , 0 ) } 1 ( m + n τ ) 2 k . {\displaystyle G_{2k}(\tau )=\sum _{(m,n)\in \mathbb {Z} ^{2}\setminus \{(0,0)\}}{\frac {1}{(m+n\tau )^{2k}}}.}

This series absolutely converges to a holomorphic function of τ in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at τ = i. It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its SL(2, Z {\displaystyle \mathbb {Z} } )-invariance. Explicitly if a, b, c, d Z {\displaystyle \mathbb {Z} } and adbc = 1 then

G 2 k ( a τ + b c τ + d ) = ( c τ + d ) 2 k G 2 k ( τ ) {\displaystyle G_{2k}\left({\frac {a\tau +b}{c\tau +d}}\right)=(c\tau +d)^{2k}G_{2k}(\tau )}

(Proof)

G 2 k ( a τ + b c τ + d ) = ( m , n ) Z 2 { ( 0 , 0 ) } 1 ( m + n a τ + b c τ + d ) 2 k = ( m , n ) Z 2 { ( 0 , 0 ) } ( c τ + d ) 2 k ( m d + n b + ( m c + n a ) τ ) 2 k = ( m , n ) = ( m , n ) ( d c b a ) ( m , n ) Z 2 { ( 0 , 0 ) } ( c τ + d ) 2 k ( m + n τ ) 2 k {\displaystyle {\begin{aligned}G_{2k}\left({\frac {a\tau +b}{c\tau +d}}\right)&=\sum _{(m,n)\in \mathbb {Z} ^{2}\setminus \{(0,0)\}}{\frac {1}{\left(m+n{\frac {a\tau +b}{c\tau +d}}\right)^{2k}}}\\&=\sum _{(m,n)\in \mathbb {Z} ^{2}\setminus \{(0,0)\}}{\frac {(c\tau +d)^{2k}}{(md+nb+(mc+na)\tau )^{2k}}}\\&=\sum _{\left(m',n'\right)=(m,n){\begin{pmatrix}d\ \ c\\b\ \ a\end{pmatrix}} \atop (m,n)\in \mathbb {Z} ^{2}\setminus \{(0,0)\}}{\frac {(c\tau +d)^{2k}}{\left(m'+n'\tau \right)^{2k}}}\end{aligned}}}

If adbc = 1 then

( d c b a ) 1 = ( a c b d ) {\displaystyle {\begin{pmatrix}d&c\\b&a\end{pmatrix}}^{-1}={\begin{pmatrix}\ a&-c\\-b&\ d\end{pmatrix}}}

so that

( m , n ) ( m , n ) ( d c b a ) {\displaystyle (m,n)\mapsto (m,n){\begin{pmatrix}d&c\\b&a\end{pmatrix}}}

is a bijection Z {\displaystyle \mathbb {Z} } 2 Z {\displaystyle \mathbb {Z} } 2 , i.e.:

( m , n ) = ( m , n ) ( d c b a ) ( m , n ) Z 2 { ( 0 , 0 ) } 1 ( m + n τ ) 2 k = ( m , n ) Z 2 { ( 0 , 0 ) } 1 ( m + n τ ) 2 k = G 2 k ( τ ) {\displaystyle \sum _{\left(m',n'\right)=(m,n){\begin{pmatrix}d\ \ c\\b\ \ a\end{pmatrix}} \atop (m,n)\in \mathbb {Z} ^{2}\setminus \{(0,0)\}}{\frac {1}{\left(m'+n'\tau \right)^{2k}}}=\sum _{\left(m',n'\right)\in \mathbb {Z} ^{2}\setminus \{(0,0)\}}{\frac {1}{(m'+n'\tau )^{2k}}}=G_{2k}(\tau )}

Overall, if adbc = 1 then

G 2 k ( a τ + b c τ + d ) = ( c τ + d ) 2 k G 2 k ( τ ) {\displaystyle G_{2k}\left({\frac {a\tau +b}{c\tau +d}}\right)=(c\tau +d)^{2k}G_{2k}(\tau )}

and G 2k is therefore a modular form of weight 2k . Note that it is important to assume that k ≥ 2, otherwise it would be illegitimate to change the order of summation, and the SL(2, Z {\displaystyle \mathbb {Z} } )-invariance would not hold. In fact, there are no nontrivial modular forms of weight 2. Nevertheless, an analogue of the holomorphic Eisenstein series can be defined even for k = 1, although it would only be a quasimodular form.

Relation to modular invariants [edit]

The modular invariants g 2 and g 3 of an elliptic curve are given by the first two Eisenstein series:

g 2 = 60 G 4 g 3 = 140 G 6 . {\displaystyle {\begin{aligned}g_{2}&=60G_{4}\\g_{3}&=140G_{6}.\end{aligned}}}

The article on modular invariants provides expressions for these two functions in terms of theta functions.

Recurrence relation [edit]

Any holomorphic modular form for the modular group can be written as a polynomial in G 4 and G 6 . Specifically, the higher order G 2k can be written in terms of G 4 and G 6 through a recurrence relation. Let dk = (2k + 3)k! G 2k + 4 , so for example, d 0 = 3G 4 and d 1 = 5G 6 . Then the dk satisfy the relation

k = 0 n ( n k ) d k d n k = 2 n + 9 3 n + 6 d n + 2 {\displaystyle \sum _{k=0}^{n}{n \choose k}d_{k}d_{n-k}={\frac {2n+9}{3n+6}}d_{n+2}}

for all n ≥ 0. Here, ( n
k
)
is the binomial coefficient.

The d k occur in the series expansion for the Weierstrass's elliptic functions:

( z ) = 1 z 2 + z 2 k = 0 d k z 2 k k ! = 1 z 2 + k = 1 ( 2 k + 1 ) G 2 k + 2 z 2 k . {\displaystyle {\begin{aligned}\wp (z)&={\frac {1}{z^{2}}}+z^{2}\sum _{k=0}^{\infty }{\frac {d_{k}z^{2k}}{k!}}\\&={\frac {1}{z^{2}}}+\sum _{k=1}^{\infty }(2k+1)G_{2k+2}z^{2k}.\end{aligned}}}

Fourier series [edit]

Define q = e . (Some older books define q to be the nome q = e π , but q = e 2π is now standard in number theory.) Then the Fourier series of the Eisenstein series is

G 2 k ( τ ) = 2 ζ ( 2 k ) ( 1 + c 2 k n = 1 σ 2 k 1 ( n ) q n ) {\displaystyle G_{2k}(\tau )=2\zeta (2k)\left(1+c_{2k}\sum _{n=1}^{\infty }\sigma _{2k-1}(n)q^{n}\right)}

where the coefficients c 2k are given by

c 2 k = ( 2 π i ) 2 k ( 2 k 1 ) ! ζ ( 2 k ) = 4 k B 2 k = 2 ζ ( 1 2 k ) . {\displaystyle {\begin{aligned}c_{2k}&={\frac {(2\pi i)^{2k}}{(2k-1)!\zeta (2k)}}\\[4pt]&={\frac {-4k}{B_{2k}}}={\frac {2}{\zeta (1-2k)}}.\end{aligned}}}

Here, B n are the Bernoulli numbers, ζ(z) is Riemann's zeta function and σ p (n) is the divisor sum function, the sum of the pth powers of the divisors of n. In particular, one has

G 4 ( τ ) = π 4 45 ( 1 + 240 n = 1 σ 3 ( n ) q n ) G 6 ( τ ) = 2 π 6 945 ( 1 504 n = 1 σ 5 ( n ) q n ) . {\displaystyle {\begin{aligned}G_{4}(\tau )&={\frac {\pi ^{4}}{45}}\left(1+240\sum _{n=1}^{\infty }\sigma _{3}(n)q^{n}\right)\\[4pt]G_{6}(\tau )&={\frac {2\pi ^{6}}{945}}\left(1-504\sum _{n=1}^{\infty }\sigma _{5}(n)q^{n}\right).\end{aligned}}}

The summation over q can be resummed as a Lambert series; that is, one has

n = 1 q n σ a ( n ) = n = 1 n a q n 1 q n {\displaystyle \sum _{n=1}^{\infty }q^{n}\sigma _{a}(n)=\sum _{n=1}^{\infty }{\frac {n^{a}q^{n}}{1-q^{n}}}}

for arbitrary complex | q | < 1 and a. When working with the q-expansion of the Eisenstein series, this alternate notation is frequently introduced:

E 2 k ( τ ) = G 2 k ( τ ) 2 ζ ( 2 k ) = 1 + 2 ζ ( 1 2 k ) n = 1 n 2 k 1 q n 1 q n = 1 4 k B 2 k n = 1 σ 2 k 1 ( n ) q n = 1 4 k B 2 k d , n 1 n 2 k 1 q n d . {\displaystyle {\begin{aligned}E_{2k}(\tau )&={\frac {G_{2k}(\tau )}{2\zeta (2k)}}\\&=1+{\frac {2}{\zeta (1-2k)}}\sum _{n=1}^{\infty }{\frac {n^{2k-1}q^{n}}{1-q^{n}}}\\&=1-{\frac {4k}{B_{2k}}}\sum _{n=1}^{\infty }\sigma _{2k-1}(n)q^{n}\\&=1-{\frac {4k}{B_{2k}}}\sum _{d,n\geq 1}n^{2k-1}q^{nd}.\end{aligned}}}

Identities involving Eisenstein series [edit]

As theta functions [edit]

Given q = e 2π , let

E 4 ( τ ) = 1 + 240 n = 1 n 3 q n 1 q n E 6 ( τ ) = 1 504 n = 1 n 5 q n 1 q n E 8 ( τ ) = 1 + 480 n = 1 n 7 q n 1 q n {\displaystyle {\begin{aligned}E_{4}(\tau )&=1+240\sum _{n=1}^{\infty }{\frac {n^{3}q^{n}}{1-q^{n}}}\\E_{6}(\tau )&=1-504\sum _{n=1}^{\infty }{\frac {n^{5}q^{n}}{1-q^{n}}}\\E_{8}(\tau )&=1+480\sum _{n=1}^{\infty }{\frac {n^{7}q^{n}}{1-q^{n}}}\end{aligned}}}

and define the Jacobi theta functions which normally uses the nome e π ,

a = θ 2 ( 0 ; e π i τ ) = ϑ 10 ( 0 ; τ ) b = θ 3 ( 0 ; e π i τ ) = ϑ 00 ( 0 ; τ ) c = θ 4 ( 0 ; e π i τ ) = ϑ 01 ( 0 ; τ ) {\displaystyle {\begin{aligned}a&=\theta _{2}\left(0;e^{\pi i\tau }\right)=\vartheta _{10}(0;\tau )\\b&=\theta _{3}\left(0;e^{\pi i\tau }\right)=\vartheta _{00}(0;\tau )\\c&=\theta _{4}\left(0;e^{\pi i\tau }\right)=\vartheta _{01}(0;\tau )\end{aligned}}}

where θm and ϑij are alternative notations. Then we have the symmetric relations,

E 4 ( τ ) = 1 2 ( a 8 + b 8 + c 8 ) E 6 ( τ ) = 1 2 ( a 8 + b 8 + c 8 ) 3 54 ( a b c ) 8 2 E 8 ( τ ) = 1 2 ( a 16 + b 16 + c 16 ) = a 8 b 8 + a 8 c 8 + b 8 c 8 {\displaystyle {\begin{aligned}E_{4}(\tau )&={\tfrac {1}{2}}\left(a^{8}+b^{8}+c^{8}\right)\\[4pt]E_{6}(\tau )&={\tfrac {1}{2}}{\sqrt {\frac {\left(a^{8}+b^{8}+c^{8}\right)^{3}-54(abc)^{8}}{2}}}\\[4pt]E_{8}(\tau )&={\tfrac {1}{2}}\left(a^{16}+b^{16}+c^{16}\right)=a^{8}b^{8}+a^{8}c^{8}+b^{8}c^{8}\end{aligned}}}

Basic algebra immediately implies

E 4 3 E 6 2 = 27 4 ( a b c ) 8 {\displaystyle E_{4}^{3}-E_{6}^{2}={\tfrac {27}{4}}(abc)^{8}}

an expression related to the modular discriminant,

Δ = g 2 3 27 g 3 2 = ( 2 π ) 12 ( 1 2 a b c ) 8 {\displaystyle \Delta =g_{2}^{3}-27g_{3}^{2}=(2\pi )^{12}\left({\tfrac {1}{2}}abc\right)^{8}}

The third symmetric relation, on the other hand, is a consequence of E 8 = E 2
4
and a 4b 4 + c 4 = 0.

Products of Eisenstein series [edit]

Eisenstein series form the most explicit examples of modular forms for the full modular group SL(2, Z {\displaystyle \mathbb {Z} } ). Since the space of modular forms of weight 2k has dimension 1 for 2k = 4, 6, 8, 10, 14, different products of Eisenstein series having those weights have to be equal up to a scalar multiple. In fact, we obtain the identities:

E 4 2 = E 8 , E 4 E 6 = E 10 , E 4 E 10 = E 14 , E 6 E 8 = E 14 . {\displaystyle E_{4}^{2}=E_{8},\quad E_{4}E_{6}=E_{10},\quad E_{4}E_{10}=E_{14},\quad E_{6}E_{8}=E_{14}.}

Using the q-expansions of the Eisenstein series given above, they may be restated as identities involving the sums of powers of divisors:

( 1 + 240 n = 1 σ 3 ( n ) q n ) 2 = 1 + 480 n = 1 σ 7 ( n ) q n , {\displaystyle \left(1+240\sum _{n=1}^{\infty }\sigma _{3}(n)q^{n}\right)^{2}=1+480\sum _{n=1}^{\infty }\sigma _{7}(n)q^{n},}

hence

σ 7 ( n ) = σ 3 ( n ) + 120 m = 1 n 1 σ 3 ( m ) σ 3 ( n m ) , {\displaystyle \sigma _{7}(n)=\sigma _{3}(n)+120\sum _{m=1}^{n-1}\sigma _{3}(m)\sigma _{3}(n-m),}

and similarly for the others. The theta function of an eight-dimensional even unimodular lattice Γ is a modular form of weight 4 for the full modular group, which gives the following identities:

θ Γ ( τ ) = 1 + n = 1 r Γ ( 2 n ) q n = E 4 ( τ ) , r Γ ( n ) = 240 σ 3 ( n ) {\displaystyle \theta _{\Gamma }(\tau )=1+\sum _{n=1}^{\infty }r_{\Gamma }(2n)q^{n}=E_{4}(\tau ),\qquad r_{\Gamma }(n)=240\sigma _{3}(n)}

for the number r Γ(n) of vectors of the squared length 2n in the root lattice of the type E 8 .

Similar techniques involving holomorphic Eisenstein series twisted by a Dirichlet character produce formulas for the number of representations of a positive integer n' as a sum of two, four, or eight squares in terms of the divisors of n.

Using the above recurrence relation, all higher E 2k can be expressed as polynomials in E 4 and E 6 . For example:

E 8 = E 4 2 E 10 = E 4 E 6 691 E 12 = 441 E 4 3 + 250 E 6 2 E 14 = E 4 2 E 6 3617 E 16 = 1617 E 4 4 + 2000 E 4 E 6 2 43867 E 18 = 38367 E 4 3 E 6 + 5500 E 6 3 174611 E 20 = 53361 E 4 5 + 121250 E 4 2 E 6 2 77683 E 22 = 57183 E 4 4 E 6 + 20500 E 4 E 6 3 236364091 E 24 = 49679091 E 4 6 + 176400000 E 4 3 E 6 2 + 10285000 E 6 4 {\displaystyle {\begin{aligned}E_{8}&=E_{4}^{2}\\E_{10}&=E_{4}\cdot E_{6}\\691\cdot E_{12}&=441\cdot E_{4}^{3}+250\cdot E_{6}^{2}\\E_{14}&=E_{4}^{2}\cdot E_{6}\\3617\cdot E_{16}&=1617\cdot E_{4}^{4}+2000\cdot E_{4}\cdot E_{6}^{2}\\43867\cdot E_{18}&=38367\cdot E_{4}^{3}\cdot E_{6}+5500\cdot E_{6}^{3}\\174611\cdot E_{20}&=53361\cdot E_{4}^{5}+121250\cdot E_{4}^{2}\cdot E_{6}^{2}\\77683\cdot E_{22}&=57183\cdot E_{4}^{4}\cdot E_{6}+20500\cdot E_{4}\cdot E_{6}^{3}\\236364091\cdot E_{24}&=49679091\cdot E_{4}^{6}+176400000\cdot E_{4}^{3}\cdot E_{6}^{2}+10285000\cdot E_{6}^{4}\end{aligned}}}

Many relationships between products of Eisenstein series can be written in an elegant way using Hankel determinants, e.g. Garvan's identity

( Δ ( 2 π ) 12 ) 2 = 691 1728 2 250 det | E 4 E 6 E 8 E 6 E 8 E 10 E 8 E 10 E 12 | {\displaystyle \left({\frac {\Delta }{(2\pi )^{12}}}\right)^{2}=-{\frac {691}{1728^{2}\cdot 250}}\det {\begin{vmatrix}E_{4}&E_{6}&E_{8}\\E_{6}&E_{8}&E_{10}\\E_{8}&E_{10}&E_{12}\end{vmatrix}}}

where

Δ = ( 2 π ) 12 E 4 3 E 6 2 1728 {\displaystyle \Delta =(2\pi )^{12}{\frac {E_{4}^{3}-E_{6}^{2}}{1728}}}

is the modular discriminant.[1]

Ramanujan identities [edit]

Srinivasa Ramanujan gave several interesting identities between the first few Eisenstein series involving differentiation. Let

L ( q ) = 1 24 n = 1 n q n 1 q n = E 2 ( τ ) M ( q ) = 1 + 240 n = 1 n 3 q n 1 q n = E 4 ( τ ) N ( q ) = 1 504 n = 1 n 5 q n 1 q n = E 6 ( τ ) , {\displaystyle {\begin{aligned}L(q)&=1-24\sum _{n=1}^{\infty }{\frac {nq^{n}}{1-q^{n}}}&&=E_{2}(\tau )\\M(q)&=1+240\sum _{n=1}^{\infty }{\frac {n^{3}q^{n}}{1-q^{n}}}&&=E_{4}(\tau )\\N(q)&=1-504\sum _{n=1}^{\infty }{\frac {n^{5}q^{n}}{1-q^{n}}}&&=E_{6}(\tau ),\end{aligned}}}

then

q d L d q = L 2 M 12 q d M d q = L M N 3 q d N d q = L N M 2 2 . {\displaystyle {\begin{aligned}q{\frac {dL}{dq}}&={\frac {L^{2}-M}{12}}\\q{\frac {dM}{dq}}&={\frac {LM-N}{3}}\\q{\frac {dN}{dq}}&={\frac {LN-M^{2}}{2}}.\end{aligned}}}

These identities, like the identities between the series, yield arithmetical convolution identities involving the sum-of-divisor function. Following Ramanujan, to put these identities in the simplest form it is necessary to extend the domain of σ p (n) to include zero, by setting

σ p ( 0 ) = 1 2 ζ ( p ) σ ( 0 ) = 1 24 σ 3 ( 0 ) = 1 240 σ 5 ( 0 ) = 1 504 . {\displaystyle {\begin{aligned}\sigma _{p}(0)={\tfrac {1}{2}}\zeta (-p)\quad \Longrightarrow \quad \sigma (0)&=-{\tfrac {1}{24}}\\\sigma _{3}(0)&={\tfrac {1}{240}}\\\sigma _{5}(0)&=-{\tfrac {1}{504}}.\end{aligned}}}

Then, for example

k = 0 n σ ( k ) σ ( n k ) = 5 12 σ 3 ( n ) 1 2 n σ ( n ) . {\displaystyle \sum _{k=0}^{n}\sigma (k)\sigma (n-k)={\tfrac {5}{12}}\sigma _{3}(n)-{\tfrac {1}{2}}n\sigma (n).}

Other identities of this type, but not directly related to the preceding relations between L, M and N functions, have been proved by Ramanujan and Giuseppe Melfi,[2] [3] as for example

k = 0 n σ 3 ( k ) σ 3 ( n k ) = 1 120 σ 7 ( n ) k = 0 n σ ( 2 k + 1 ) σ 3 ( n k ) = 1 240 σ 5 ( 2 n + 1 ) k = 0 n σ ( 3 k + 1 ) σ ( 3 n 3 k + 1 ) = 1 9 σ 3 ( 3 n + 2 ) . {\displaystyle {\begin{aligned}\sum _{k=0}^{n}\sigma _{3}(k)\sigma _{3}(n-k)&={\tfrac {1}{120}}\sigma _{7}(n)\\\sum _{k=0}^{n}\sigma (2k+1)\sigma _{3}(n-k)&={\tfrac {1}{240}}\sigma _{5}(2n+1)\\\sum _{k=0}^{n}\sigma (3k+1)\sigma (3n-3k+1)&={\tfrac {1}{9}}\sigma _{3}(3n+2).\end{aligned}}}

Generalizations [edit]

Automorphic forms generalize the idea of modular forms for general Lie groups; and Eisenstein series generalize in a similar fashion.

Defining OK to be the ring of integers of a totally real algebraic number field K, one then defines the Hilbert–Blumenthal modular group as PSL(2,OK ). One can then associate an Eisenstein series to every cusp of the Hilbert–Blumenthal modular group.

References [edit]

  1. ^ Milne, Steven C. (2000). "Hankel Determinants of Eisenstein Series". arXiv:math/0009130v3. The paper uses a non-equivalent definition of Δ {\displaystyle \Delta } , but this has been accounted for in this article.
  2. ^ Ramanujan, Srinivasa (1962). "On certain arithmetical functions". Collected Papers. New York, NY: Chelsea. pp. 136–162.
  3. ^ Melfi, Giuseppe (1998). "On some modular identities". Number Theory, Diophantine, Computational and Algebraic Aspects: Proceedings of the International Conference held in Eger, Hungary. Walter de Grutyer & Co. pp. 371–382.

Further reading [edit]

  • Akhiezer, Naum Illyich (1970). "Elements of the Theory of Elliptic Functions" (in Russian). Moscow. Translated into English as Elements of the Theory of Elliptic Functions. AMS Translations of Mathematical Monographs 79. Providence, RI: American Mathematical Society. 1990. ISBN0-8218-4532-2.
  • Apostol, Tom M. (1990). Modular Functions and Dirichlet Series in Number Theory (2nd ed.). New York, NY: Springer. ISBN0-387-97127-0.
  • Chan, Heng Huat; Ong, Yau Lin (1999). "On Eisenstein Series" (PDF). Proc. Amer. Math. Soc. 127 (6): 1735–1744. doi:10.1090/S0002-9939-99-04832-7.
  • Iwaniec, Henryk (2002). Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics 53 (2nd ed.). Providence, RI: American Mathematical Society. ch. 3. ISBN0-8218-3160-7.
  • Serre, Jean-Pierre (1973). A Course in Arithmetic . Graduate Texts in Mathematics 7 (transl. ed.). New York & Heidelberg: Springer-Verlag. ISBN9780387900407.

burksdoway2000.blogspot.com

Source: https://en.wikipedia.org/wiki/Eisenstein_series

0 Response to "Colin De Verdiere s Meromorphic Continuation of Eisenstein Series"

Enregistrer un commentaire

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel